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Abstract 

A comprehensive mathematical modeling of wastewater-fed microbial fuel cells (MFC) 

demands an in-depth process understanding of the main electrical and bioelectro-

chemical interactions at both electrodes. In this study, a novel holistic simulation ap-

proach using a low-parameterized model was applied to predict pollutant transport, 

conversion, and electrical processes of mixed-culture single-chamber MFCs. The pro-

posed whole-cell model couples the combined bioelectrochemical-electrical model with 

the well-established Activated Sludge Model No.1 (ASM1) and specific equations from 

ASM2. The cathodic gas-liquid mass transfer of oxygen and free ammonia nitrogen 

was described in terms of a diffusion film model, while the diminishing diffusivity due 

to salt deposits was considered via a fouling decline kinetic model. The predictive ca-

pacity of the model was validated using experimental data of three continuous-flow 

single-chamber MFCs operated with municipal wastewater for 150 days. Electrochem-

ical parameters were estimated in real-time by pulse-width modulated connection of 

the external electrical load resistance. Following a sensitivity analysis, the most rele-

vant model parameters were optimized through the Monte-Carlo Markov-Chain 

method using the adaptive Metropolis algorithm. All other parameters were adopted 

from benchmark simulation studies. The simulated relative contributions of aerobic car-

bon oxidation, denitrification, electrogenesis, and methanogenesis to the total COD 

removal rate were 21-22%, 44-45%, 21-25%, and 9-14%. Overall, the presented 

whole-cell model is able to successfully predict the evolution of electricity generation, 

methane production, and effluent concentrations (soluble COD and total ammonia ni-

trogen) under different hydraulic conditions and organic loading rates.  

Keywords: Microbial fuel cell; Whole-cell model; Multi-population; Real-time parame-

ter estimation; Fouling kinetics; Municipal wastewater



 

1 
 

1 Introduction 

Municipal wastewater is contaminated with a wide range of complex organic (i.e car-

bohydrates, fats, and proteins) and inorganic (i.e. ammonia, phosphorus, and heavy 

metals) compounds from domestic and non-domestic sources. To remove these con-

taminants, microbial fuel cells (MFCs) are one promising bio-electrochemical device 

that offers synergic benefits to wastewater treatment by allowing for bioenergy produc-

tion and recovery of valuable products [1–3]. In such systems, the current is generated 

by anaerobic oxidation of organic matter through electrochemically active microbes, 

also known as electricigens, electrogens, anodophiles, or anode-respiring bacteria [4]. 

These microbes are capable to transfer the produced electrons from intracellular me-

diators outside of the cell to the anode (electron acceptor) via direct and/or shuttle-

mediated extracellular electron transfer (EET) pathways [5–9]. From here, the elec-

trons are transferred through an external electrical circuit to the cathode where they 

are reduced to water together with oxygen and protons (electrogenesis). In mixed-cul-

ture MFCs using real wastewater, the presence of other non-exoelectrogenic bacteria 

allows for a more proper wastewater treatment. Thus, concurrent electricity generation 

and wastewater treatment further favor its application as eco-friendly devices for future 

wastewater treatment facilities. A recent literature review [10] on MFC wastewater 

treatment performance demonstrates chemical oxygen demand (COD), total nitrogen 

(TN), ammonium nitrogen (NH4
+-N), and total phosphor (TP) removal efficiencies of 5-

99%, 5-98%, 20-99%, and 14-96% depending on operating conditions. Nevertheless, 

the practical implementation of MFCs is still a challenge due to electrochemical, micro-

biological, engineering, operational and economic aspects [11]. The lack of field-scale 

experiences can be partially compensated by using mathematical models that allow 

for performance and design optimization [12,13] and to evaluate the effects of integrat-

ing a MFC into a wastewater treatment plant [14]. However, a reliable model-based 
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evaluation needs an in-depth process understanding of the involved nonlinear electri-

cal and bioelectrochemical dynamics in MFCs. 

Although one of the first mathematical models for MFCs was already published in 1995 

[15], there are only a few simulation studies available, which are limited to specific 

processes or components [13]. According to the EET mechanism, MFC models can 

be classified into two main groups: (a) mediator- and (b) conduction-based models 

[16]. Most of these mathematical models are anode-based, assuming single or two 

microbial communities and using acetic acid as the sole carbon source (see Table 1). 

In later studies, the mediator- and/or conduction-based model approach was updated 

to consider complex wastewaters and mixed bacterial cultures. Therefore, MFC mod-

els were extended by implementing Activated Sludge Models (ASM1, ASM2d), or Ber-

nard’s model, or the Anaerobic Digestion Model No. 1 (ADM1). Concurrent with these 

anode-based models, only a relatively small number of cathode-based [17,18] or com-

prehensive, whole-cell models [19–21] were published. As summarized in Table 1, 

there is a lack of whole-cell models that account for both biological and physiochemical 

processes at the electrodes, as well as multiple microbial consortia, which are funda-

mental for a comprehensive understanding of MFCs operated with complex substrates 

(e.g., real wastewater) as feedstock. 

As stated by Jadhav et al. [13], for scale-up applications whole-cell modeling is neces-

sary to address bioelectrochemical and electrical process interactions and their effects 

on energy recovery as well as nutrient removal efficiencies. Therefore, a holistic model 

approach needs to consider various processes: (1) biochemical conversion reactions 

i.a. hydrolysis, fermentation, oxidation of organic carbon, nitrification-denitrification, 

electrogenesis, methanogenesis, etc. (2) gas-liquid mass transfer through the air-ex-

posed cathode, and (3) other electricity-induced processes. A whole-cell model also 

needs to consider the electrical properties of a MFC. Herein, a promising approach is 
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to transform the MFC into an equivalent electrical circuit in order to describe the elec-

trical behavior by using basic electrical components [22–24]. For practical predictions, 

the model should also include the main factors affecting the long-term stability of the 

system. Herein, salt precipitation that contributes to inorganic internal fouling of the air-

exposed cathodes is one key mechanism that limits cathode performance [25].  

In this study, the combined bioelectrochemical-electrical (CBE) model presented by 

Recio-Garrido et al. [26] was coupled with the ASM1 [27] and specific equations from 

ASM2 [28] to form a whole-cell model for mixed-culture, wastewater-fed single-cham-

ber MFCs (SC-MFCs). Gas-liquid mass transfer of oxygen and free ammonia nitrogen 

was described in terms of two-film theory with a membrane in between the gas-liquid 

phase. Real-time monitoring of electrochemical parameters and a fouling decline ki-

netic model were used to account for the ongoing salt accumulation at the cathode. 

Similar to other studies, the proposed model is based on ordinary differential equations 

but additionally considers the co-existence of heterotrophic, autotrophic, electrochem-

ically active, and methanogenic microbial groups. To increase the effectiveness of 

model calibration, a sensitivity analysis was carried out to identify the most relevant 

model parameters. These parameters were optimized via the Monte-Carlo Markov-

Chain (MCMC) method. Model predictive capacity was validated by comparing model 

outputs with experimental data of three SC-MFCs operated with municipal wastewater 

for 150 days. 

Table 1: Comparison and classification of some MFC models found in literature with 
the model proposed in this study.  

Ref. Substrate 
Biomass 
groups 

Electron transfer 
Model            
extension 

COD-
based 

Electrode     
modeling 

[29] Acetic acid Two DET, intracellular mediator - No Anode 

[26] Acetic acid Two DET, intracellular mediator - No Anode 

[30] Swine WW Multiple DET, intracellular mediator ASM2d Yes Anode 

[31] Gluconic acid Multiple Conduction  Bernard’s model Yes Anode 

[32] 
Dairy WW; 
Glucose; Cel-
lulose 

Multiple Conduction  ADM1 Yes Anode 

[21] Acetic acid Multiple Conduction  - No Anode/Cathode 
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[17] Acetic acid Two Conduction   No Cathode 

[20] Acetic acid Single Conduction  - No Anode/Cathode 

[18] Artificial WW Multiple Conduction  ASM1 Yes Cathode 

[33] WW-fed MFC Multiple External mediator ADM1 Yes Anode 

[34] Dairy WW 
Active, 
inactive 

Conduction  - Yes Anode 

[35] Glucose Single 
Self-produced mediators; 
Conduction 

- Yes Anode 

[19] Lactic acid Single DET - No Anode/Cathode 

[36] Glucose Two DET, intracellular mediator - Yes Anode 

This study Municipal WW Multiple DET, intracellular mediator ASM1 Yes Anode/Cathode 

DET: Direct electron transfer via nanowires or direct contact  

 

2 Materials and Methods 

2.1 Reactor design and peripheral devices 

The experiments were carried out in triplicate single-chamber MFCs, continuously ope-

rated with municipal wastewater for 150 days (Figure S1). Thereby, one reactor is 

used for model calibration and direct validation (MFC-C), while the remaining reactors 

MFC-V1 and MFC-V2 are used for cross validation. For each MFC the working volume 

was 3.0 L with an additional headspace volume of 288 mL. Stainless steel activated 

carbon (SS/AC) gas diffusion electrodes (VitoCORE®;18 cm x 19 cm) manufactured 

by VITO NV (BEL) were used as air-exposed cathodes. The cathodes were fixed at 

both sides of the reactor. The resulting available area for oxygen reduction was 

20.5 m²Cat m-3. Six heat-treated [37] graphite fiber brushes (MILL-ROSE Company, 

USA; Ø 2.5 cm; 19 cm) were placed in front of each cathode ensuring equal projected 

surface areas of the anode and cathode [38]. The specific, cylinder-equivalent surface 

area of the anodes was 63.9 m²An m-3. The distance between the inner surface of the 

cathode and the outer edge of the brush was 0.5 cm. Due to the small distance 

between the cathode and the anode, a glass fiber mat (300 g m-2) was placed between 

the electrodes to prevent a possible short circuit. Furthermore, the installation of an 

internal recirculation (4.8 W submersible pump, Decdeal, CHN) ensured proper mixing 

conditions, minimized concentration gradients between bulk and both electrode 
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surfaces, and also improved the proton mass transfer between them. The recirculation 

rate was 2.61 ± 0.04 L min-1 and was mixed with fresh wastewater before entering the 

system through three inlet openings at the bottom of the reactor as fast-spreading tur-

bulent jets. The Reynolds number and velocity in the inlet openings were 4,813 (22 °C) 

and 1.2 m s-1, respectively. Each MFC was inoculated and operated with municipal 

wastewater (effluent from grit chamber), which was stored in a continuously stirred 

anaerobic tank (150 L) and cooled to 8.0 ± 2.2 °C. The storage tank was refilled every 

second day for 20-30 minutes with fresh wastewater, thus a complete volume 

exchange can be assumed. Flow rate and hydraulic retention time were controlled by 

a multi-channel peristaltic pump (Watson Marlow 205S, GBR). 

Throughout the operation, each MFC was operated with a pulse-width modulated dis-

connection and connection of the external electrical load resistance (R-PWM mode). 

For practical implementation, the external electrical circuit of each MFC was extended 

as described by Littfinski et al. [22]. The key components of the extended circuit are a 

breadboard equipped with an electrical switch (IFR 3708, International Rectifier, El Se-

qundo, CA, USA), an IO-4 Bricklet, an isolator Bricklet, and a Master Brick (Tinkerforge 

GmbH, GER). A schematic illustration of the reactor design, the peripheral devices, 

and the modular design for real-time monitoring is shown in Figure 1. 

 

Fig. 1: Schematic illustration of the reactor design, the peripheral devices, and the 
modular design for real-time monitoring of electrochemical parameters. 
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2.2 Operation conditions and data acquisition 

A start-up phase of 32 days was used to adjust the experimental settings and control 

strategy. After start-up, the effluents of each MFC were completely collected daily and 

stored immediately at 4.0 ± 0.6 °C. Using the collected effluent the average flow rate 

was determined and controlled. Average flow rates were 3.1 ± 0.3 L d-1 (Day 0-57), 

2.7 ± 0.5 L d-1 (Day 57-95), 4.1 ± 0.5 L d-1 (Day 95-119), 6.2 ± 0.3 L d-1 (Day 119-136) 

and 2.5 ± 0.2 L d-1 (Day 136-143), respectively. Influent and 24 h mixed samples of the 

effluents were analyzed for COD (LCl 400, Hach, GER) and ammonium nitrogen 

(LCK 302-303, Hach, GER). Average electrical conductivity (TetraCon 925, WTW 

GmbH, GER), pH (SenTix® 940, WTW GmbH, GER) and dissolved oxygen concent-

ration (LDO sensor, Hach, GER) of the influent was 1.20 ± 0.16 mS cm-1, 7.6 ± 0.3 and 

0.17 ± 0.13 mg L-1, respectively. Bulk solution temperature was 22.0 ± 1.3 °C. A detai-

led description of the operation conditions of each MFC can be found in Table S1. 

For in-situ gas analysis, the accumulated biogas within the headspace was extracted 

using a glass syringe (VWR International GmbH, GER; 50 mL) and injected into the 

gas analyzer system (AwiFLEX-XL, Awite Bioenergie GmbH, GER). The device was 

equipped with NDIR multigas sensors (Awite Bioenergie GmbH, GER) for methane 

(CH4) and carbon dioxide (CO2) and electrochemical sensors (I-103V, IT Dr. Gambert 

GmbH, GER) for oxygen (O2). Average pressure in the headspace of the reactors was 

recorded and was on average 1,004 ± 9 hPa. Direct measurements of the amount of 

produced biogas in SC-MFCs are difficult [39] because a part of the biogas could leave 

the system through the air-exposed cathodes. This prevents the formation of overpres-

sure in the headspace and makes the use of gas counters inappropriate. Nevertheless, 

for model calibration, the molar quantity (nCH4) of produced methane was approximated 

by combining in-situ measurements (gas composition, temperature, average pressure, 

and flow rate) with ideal gas and Henry’s law. Similar to Magen et al. [40], the average 
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methane production rate was estimated by summing the daily variations in the amount 

of methane in water (anolyte and transport via effluent) and the headspace. Nonethel-

ess, potential methane emissions through the cathodes were not considered.  

During operation, the cell voltage (UMFC) at the external load resistance (R-Box 02, 

Voltcraft, GER) and other incoming physical input/output signals were recorded every 

15 minutes by a data acquisition system (InTouch, Wonderware, GER). While perfor-

ming the R-PWM mode, the voltage across the electrical switch and the total external 

cell voltage was recorded with a data acquisition board (Labjack U3-LV, Labjack Corp, 

USA). The sampling rate of 1,000 scans per second was selected based on the fin-

dings of our previous study [22]. Higher scan rates are not suitable and lead to inaccu-

racies during parameter estimation. This is because of inductance effects that become 

visible as voltage overshoots immediately after switching from closed-circuit to open-

circuit. Furthermore, frequency and duty cycle of the electrical switch were computer-

controlled via the system development software LabVIEW (National Instruments Corp., 

USA). 

After changing the hydraulic conditions, the internal resistance of each MFC was eva-

luated using the polarization slope method (varying circuit resistance method). There-

fore, the MFCs were disconnected from the external electrical load resistance for 

30 min and then gradually reduced (every 15 min, after voltage was stable) from 

1000 Ω to 1 Ω. The total internal resistance was calculated from the linear part of the 

polarization curve using -ΔUMFC/ΔIMFC [41]. To achieve maximum power outputs, the 

load resistance was matched to the obtained internal cell resistance. For MFC-C, MFC-

V1, and MFC-V2 the average load resistance was set to 10 ± 1 Ω, 24 ± 5 Ω, and 

10 ± 2 Ω.  
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2.3 Numerical methods and calculations  

R statistical computing software was used to solve the stiff system of ordinary differ-

ential equations (ODEs). Therefore, the ode() function from the “deSolve” package [42] 

in R was used (ODE subroutine, implicit Runge-Kutta function). 

According to De Pauw and Vanrolleghem [43], a local relative sensitivity analysis was 

performed by analyzing the sensitivity of a process variable (y) to a specific parameter 

(Ψ), which can be expressed as a sensitivity function dy/dΨ. In practice, dy/dΨ is im-

plemented as a multiplication of the parameter value Ψ and a user-defined factor ξ, the 

so-called "perturbations factor". Depending on the approximation method -forward (Tij
+) 

and backward (Tij
−) finite difference approximation-, the discrete and dimensionless 

sensitivity function results in: 

Tij
+ =

yi(t, Ψj + ξ · Ψj) − yi(t, Ψj)

ξ · Ψj
·

Ψj

yi(t, Ψj)
 (1) 

 Tij
− =

yi(t, Ψj) − yi(t, Ψj − ξ · Ψj)

ξ · Ψj
·

Ψj

yi(t, Ψj)
 (2) 

where Tij
+ and Tij

− are the dimensionless sensitivity value of the i-th process variable 

with respect to the j-th model parameter; yi is the i-th process variable; t is the indepen-

dent variable (simulation time); Ψj is the j-th model parameter; and ξ is the perturbation 

factor (tested ξ-values ranging from 1·10-1 to 1·10-4).  

By using the obtained optimal perturbation factors (Figure S7 and Table S3), the cen-

tralized sensitivity function Tij (average of Tij
+ and  Tij

−) was used for sensitivity analysis 

of the measurable process variables (i= UMFC, sCOD, SNH, SO2, and QCH4). As a starting 

point for the sensitivity analysis, a simulation run was carried out in which all parameter 

values were adopted from benchmark simulation studies (Table S4).  
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Parameter optimization and its uncertainty were performed with the help of the Monte-

Carlo Markov-Chain (MCMC) method [44–46] using the adaptive Metropolis proce-

dure. To perform MCMC simulations the modMCMC() function was used, which was 

already implemented in the R software package “Flexible Modeling Environment” [47]. 

As an evaluation function, the model residuals (ϵij) for any observed data point j of the 

i-th process variable were calculated. Finally, to make the residuals non-dimensional 

a weighting factor (y̅i
obs) was used. Hence, different units and magnitudes of the i-th 

process variable were considered.  

ϵij =
yij
sim − yij

obs

y̅i
obs 

 (i = UMFC, sCOD, SNH, QCH4, SO2, and QCH4) (3) 

where yij
sim and yij

obs are the simulated and measured values of the i-th process varia-

ble at sampling time j, respectively; y̅i
obs the average value of the i-th observed process 

variable. 

10,000 MCMC simulations were performed (Figure S8), whereas the first 2,000 itera-

tions were categorized into the „burn-in“ period. The lower and upper parametric limits 

were defined through values from literature (Table S4). To evaluate single-chain con-

vergence the Geweke test statistic [48] was used. Z-Score test statistic was calculated 

by using the geweke.diag() function from the “coda” R software package [49]. If the 

chain of the selected parameter converged, the first and last parts of the chain should 

have the same expected average value and the Z-Score has an asymptotically stand-

ard normal distribution. Thus, according to Fallahi et al. [50] convergence is achieved, 

if |Z|<1.28. 

Model predictive capacity was evaluated using the calculations of the root mean square 

error (RMSE, equation 4) and the mean squared error (MSE, equation 5). 
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RMSE = √
1

N
∙∑(yij

sim − yij
obs)

2
N

j=1

 (4) 

MSE =
1

N
∙∑(

yij
sim − yij

obs

y̅ij
obs 

)

2N

j=1

 (5) 

where N is the number of measurements of the j-th process variable. 

  

3 Model formulation 

The proposed whole-cell model couples the bioelectrochemical-electrical (CBE) model 

presented by Recio-Garrido et al. [26] with the well-known Activated Sludge Model 

No. 1 [27] and specific process equations from ASM2 [28]. Since the CBE model, com-

bines the bioelectrochemical submodel [29] with the electrical submodel [23], both non-

linear fast and slow electrical and biomass-related dynamics can be simulated. To ac-

count for the complex microbiome in wastewater-fed SC-MFCs a generalized COD- 

and matrix-based notation (Table 4) of Recio-Garrido’s model was developed. The 

presented whole-cell model considers nine soluble and eight particular substances 

with additional electrical variables (Table 2).  

Table 2: Nomenclature of the process variables. 

Process variable Description Unit 

Conversion submodel 

SO2 Dissolved oxygen (negative COD) mgO2 L-1 

SI Soluble inert organic matter mgsCOD L-1 

SF Fermentable, readily biodegradable organic substrate mgsCOD L-1 

SA Fermentation products, considered to be acetate mgsCOD L-1 

SNH Total ammonia nitrogen  (NH4
+-N + NH3-N) mgN L-1 

SNO Nitrate and nitrite nitrogen mgN L-1 

SALK Alkalinity mmol L-1 

SND Soluble biodegradable organic nitrogen mgN L-1 

Mox/Mred Oxidized and reduced intracellular mediators mgmediator mgxCOD
-1 

XI Particulate inert organic matter mgxCOD L-1 

XS Slowly biodegradable substrate mgxCOD L-1 

XP Particulate products arising from microbial decay mgxCOD L-1 

XND Particulate biodegradable organic nitrogen mgN L-1 

XH Heterotrophic microbes mgxCOD L-1 
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XA Autotrophic microbes mgxCOD L-1 

XEA Electrochemically active microbes mgxCOD L-1 

XM Methanogenic microbes mgxCOD L-1 

Electrical submodel 

Rohmic, Ract, Rconc
 Ohmic(a), activation(a), concentration resistance Ω 

Rext External resistance (sum of switch and load resistance) Ω 

UMFC, UC, UOCV Cell voltage, voltage at the capacitor, open-circuit voltage(a) V 

IMFC Cell current A 

Cdl Double-layer capacitance(a) F 

(a) Obtained from R-PWM mode. 

While the whole-cell model is largely based on the CBE model and the ASM1, it adopts 

its features, simplifications, and assumptions. Accordingly, the whole-cell model ac-

counts for the co-existence of electrochemically active (XEA, attached at the anode), 

methanogenic (XM, attached at the anode or suspended), heterotrophic (XH, attached 

at both electrodes or suspended), and autotrophic (XA, attached at the cathode) mi-

crobes. Multiplicative Monod kinetics and Arrhenius equations are used to describe the 

process kinetics with respect to the actual liquid temperature. Biomass retention is 

described by a two-phase growth-washout model [29]. The mathematical description 

of the intracellular charge transfer involved reduced (NADH) and oxidized (NAD+) me-

diators with a constant mediator pool per microorganism. Conduction-based, extracel-

lular electron transfer mechanism is assumed via conductive pili (nanowires) or direct 

contact with the anode. Other model restrictions and simplifications are summarized 

below. 

(1) Ideal mixing is assumed and the substrate gradient in the electrode-biofilms is ne-

glected, thus bulk liquid and biofilm substrate concentrations are equal;  

(2) Bulk-liquid pH is constant and approximately neutral (6.7 ± 0.3), thus no alkalinity 

limitation for the fermentation process was assumed; 

(3) Uniform distribution of the microbial communities within the anodic compartment; 

(4) For simplification, the archaeal community was represented only by Methanosaeta 

spp., which is commonly reported as the most dominant methanogenic genus in 
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MFCs [51]. Further evidence for the abundance of Methanosaeta spp. in the anodic 

biofilm was the visualized filamentous morphology after fluorescence in situ hybrid-

ization (Figure S2); 

(5) Oxygen inhibition of electrochemically active and methanogenic microbes was 

neglected, based on average redox potential (-335 ± 18 mV) and dissolved oxygen 

(0.02 ± 0.01 mg L-1) measurements; 

(6) Measured time-dependent external variables (discrete-time data) were converted 

into continuous-time data by linear interpolation; 

(7) Oxygen supply from the headspace is neglected due to low measured oxygen con-

centrations in the gas phase of < 2.0%; 

(8) Model conception for ammonia volatilization and its assumptions based on Littfinski 

et al. [52]. 

The model conception assumed that electricigens can only metabolize acetate 

(CH3COOH), while a direct conversion of complex substrates does not play a major 

role in mixed-culture MFCs [9,53]. Herein, the breakdown of larger complex organic 

molecules (XS) occurs extracellularly by heterotrophic microbes, releasing fermentable 

readily biodegradable organic substrates (SF). The hydrolysis process was modeled 

via surface saturation reaction kinetics [27] for aerobic, anoxic, and anaerobic condi-

tions. The following VFAs producing stage assumes, that the VFAs are only repre-

sented by acetic acid and that the transformation of fermentable COD to acetate occurs 

in a single step [31,35,54].  

XS (slowly biodegradable COD) → SF (fermentable COD) (6) 

SF (fermentable COD) → nSA (acetate) (7) 

Additional biochemical conversion reactions in the anodic compartment include: the 

acetate conversion to electrons, protons, and CO2 by electricigens (XEA; equation 8a); 
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the transformation between oxidized (Mox) and reduced (Mred) intracellular mediators 

(equation 8b); biodegradable substrate consumption (represented by C10H19O3N) by 

denitrifiers (XH; equation 9); and acetate consumption by acetoclastic methanogenic 

archaea (XM; equation 10) [54,55].  

CH3COOH + 2H2O + 4Mox
XEA
→  2CO2 + 4Mred  

(8a) 

4Mred → 4Mox + 8e
− + 8H+ (8b) 

C10H19O3N+ 10NO3
−
XH
→ 5N2 + 10CO2 + 3H2O+ NH3 + 10OH

− (9) 

CH3COOH 
XM
→ CO2 + CH4 (10) 

Furthermore, oxidation of organic carbon by heterotrophic organisms (XH; equation 11) 

and nitrogen by autotrophic nitrifiers (XA; equation 12) within the cathodic biofilm are 

considered [56]. Due to the formation of OH- ions during the oxygen reduction reaction 

(ORR, equation 13) a distinct pH gradient in the surroundings of the catalytically active 

cathode surface (from 9.3 to 11.6) and the bulk solution (~7.0) of the MFC is formed 

[52,57,58]. This local alkalinization shifts the dissociation equilibrium of ammonium 

(NH4
+) towards gaseous ammonia (NH3), which can finally diffuse through the air-ex-

posed cathode into the atmosphere. Hence, electrochemical ammonia stripping (EAS, 

equation 14), as a physiochemical ammonia removal pathway in SC-MFCs is as-

sumed. 

C10H19O3N+ 12.5O2
XH
→ 10CO2 + NH3 + 8H2O  

(11) 

NH4
+ + 2O2

XA
→ NO3

− + H2O ++2H
+ (12) 

O2 + 4e
− +2H2O

ORR
→  4OH− (13) 

NH4
+ + OH−

EAS
→  NH3 + H2O (14) 

The above-mentioned processes (equations 11-14) largely depend on the gas perme-

ability of the cathode. Santini et al. [59], An et al. [60], and Li et al. [61]  reported, that 
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the predominant reason for cathodic performance decay and reduced oxygen diffusiv-

ity are salt clogs, which clogged a portion of micropores in the catalyst layer. Similar, 

chemical analysis of the salt deposits at the end of the experiments (Figure S4) indi-

cate, that calcium (~69%), sodium (~18%) and magnesium (~8%) carbonates 

[60,62,63] were the dominant salt deposits within the inner cathodic structure. Hence, 

the model conception considers a diminishing diffusivity of the cathode over time and 

its impact on cathode performance and mass transfer coefficients [61,64]. Representa-

tive, the stoichiometry of calcium carbonate precipitation is shown in equation 15.  

Ca2+ + CO3
2− → CaCO3 ↓ (15) 

The overall model conception is depicted in Figure 2. 

 

Fig. 2: Schematic illustration of the proposed whole-cell model: (A) Hydrodynamic mix-
ing and conversion submodel, (B) electrical submodel, (C) Gas-liquid mass transfer 
– Film theory – and fouling decline kinetic submodel, and (D) COD wastewater char-
acterization submodel. (Cdl – double-layer capacity; Ract – activation resistance; 
Rext – external resistance; Rload – electrical load resistance; Rohmic – ohmic resistance; 
RSW – switch resistance; SA – Fermentation products i.e. acetate; SF – fermentable 
substrate; SS – readily biodegradable soluble COD; SI – soluble non-biodegradable 
COD; XA – autotrophic microbes; XEA – electrochemically active microbes; XH – het-
erotrophic microbes; XI – particulate non-biodegradable COD; XM – acetoclastic meth-
anogenic microbes; Xs – slowly biodegradable COD). 

3.1 Wastewater characterization submodel 

Because anaerobic processes play key roles at the anodic compartment, specific 

equations for anaerobic hydrolysis and fermentation are adopted from the ASM2 [28]. 

Consequently, the readily biodegradable substrate was divided into fermentable COD 
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and volatile fatty acids (VFAs). Thus, different from ASM1, the total COD can be frac-

tionated as described in ASM2 (see also Table S2).  

tCOD = sCOD + xCOD = SF + SA⏟    
SS

+ SI + XS + XI + XP + XH + XA + XEA + XM⏟              
lumped in XS

 
(16) 

where tCOD is the total COD; sCOD is the soluble COD; xCOD is the particulate COD; 

SS is the readily biodegradable substrate; SF is the fermentable readily biodegradable 

substrate; SA is the fermentable product; SI is the soluble non-biodegradable COD; XS 

is the slowly biodegradable particulate COD; XI is the particulate non-biodegradable 

COD; and XP is the inert particulate product arising from microbial decay. 

3.2 Hydrodynamic mixing and conversion submodel 

Based on tracer studies (impulse signal, see Figure S3), the global flow pattern in the 

MFCs can be considered as completely mixed (dispersion dominates) and the hydro-

dynamic behavior can be represented by a continuously stirred tank reactor (CSTR). 

Hence, pollutant transport and conversion processes can be mathematically described 

by a stiff, coupled, first-order ordinary differential equation system.  

Autotrophic and heterotrophic growth based on the described process kinetics of the 

ASM1 with an additional multiplicative term for substrate competition (SF/(SF+SA) and 

SA/(SF+SA), see Table 3) from ASM2 to consider heterotrophic growth on both SF and 

SA, respectively. The process kinetic for fermentation (ρ10) was adopted from ASM2 

with the simplification of neglecting the alkalinity – that was assumed to be always 

above limiting concentrations. Growth rate of electroactive organisms and acetoclastic 

methanogens was related to the concentrations of acetate and also ammonium nitro-

gen. In the case of electrochemically active microbes, the oxidized mediator concent-

ration is additionally considered. Biomass decay is modeled via lysis. For a CSTR with 

biomass retention the dynamic material balances for the involved microbes can be 

written as follows:  
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dXH
dt

= −αH ∙
Q

VMFC
∙ XH + ρ5 + ρ6 + ρ7 + ρ8 − ρ9 (17) 

dXA
dt

= −αA ∙
Q

VMFC
∙ XA + ρ12 − ρ13 (18) 

dXEA
dt

= −αEA ∙
Q

VMFC
∙ XEA + ρ14 − ρ15 (19) 

dXM
dt

= −αM ∙
Q

VMFC
∙ XM + ρ17 − ρ18 (20) 

where αi is the dimensionless biofilm retention constant for i-th microbe; Q is the flow 

rate [L d-1]; VMFC is the working volume of the MFC [L]; XH, XA, XEA, and XM are the 

concentrations of heterotrophic, autotrophic, electrochemically active and acetoclastic 

methanogenic microbes [mgxCOD L-1]; and ρ is the process rate of biological process 

[mg L-1 d-1]. 

Similar to Pinto et al. [29] biofilm formation and retention are simulated via a two-phase 

growth-washout biofilm model. Therefore, a dimensionless washout coefficient (α) is 

used to describe the typical phases of biofilm formation (lag phase, log phase, plateau) 

and to consider its steady-state biomass density. In order to limit the maximum at-

tainable concentration (Xmax) to a reasonable value, an upper limit for each microbial 

community of 3.16 gxCOD m-²Electrode [29] is assumed. To account for the existence of 

suspended and attached methanogenic (anode) and heterotrophic (anode and ca-

thode) microbes, Xmax differs from those of electrode-linked electrochemically active 

(anode) and autotrophic (cathode) microbes with Xmax,A < Xmax,EA < Xmax,M < Xmax,H.  

Piecewise biofilm retention functions are zero when the bacterial concentrations are 

below Xmax and deviate from zero once Xmax is reached. The strength of washout is 

described using a steepness factor (Kx).  
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αλ = {

0 if  Xλ ≤ Xmax,λ
1

2
∙ [1 + tanh (Kx ∙ (Xλ − Xmax,λ))]  if Xλ > Xmax,λ 

 (21) 

where αλ is the dimensionless washout coefficient for i-th microbe; Xλ indicate the con-

centration of heterotrophic (λ = H), autotrophic (λ = A), electrochemically active (λ =

EA ) or methanogenic ( λ = M ) microbes [mgxCOD L-1]; Kx is the steepness factor 

[L mgxCOD
-1]; and Xmax,λ is the maximum attainable concentration of each microbial 

community (λ) [mgxCOD L-1].   

Mass balance for soluble and particulate material fractions, excluding the intracellular 

mediators and microbial communities, can be formulated for ideal mixing conditions as 

follows: 

dSi
dt
=

Q

VMFC
∙ (Si,in − Si) ±∑νij ∙ ρi

j

(except i = 9)  (22) 

dXi
dt
=

Q

VMFC
∙ (Xi,in − Xi) ±∑νij ∙ ρi

j

 
(23) 

where Si,in and Si are the dissolved material fraction in the influent and the bulk liquid 

of the reactor [mgsCOD
 L-1]; Xi,in and Xi are the particulate material fraction in the influent 

and the bulk liquid of the reactor [mgxCOD
 L-1]; and νij is the stoichiometric coefficient of 

the i-th material fraction of the j-th process.  

Gas-liquid mass transfer (cathodic re-aeration and electrochemical ammonia stripping) 

through the air-exposed cathode was described in terms of a diffusion film model (two-

film theory with a membrane/cathode in between the gas-liquid phase). Thus, the mass 

flux across the gas film, the membrane, and the liquid film can be predicted via Fick’s 

first law [52]. Temperature dependency of oxygen saturation concentration (SO2
∗  in 

mg L-1) and methane prodction rate (QCH4 in mLCH4 d-1) was described by the following 

fundamental equations:  
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SO2
∗ = kH

θ ∙ exp ( 
−ΔsolnH

R
∙ (

1

273.15 + T(°C)
−

1

273.15 + T0(°C)
)) ∙ pO2 ∙ MO2 ∙ 1000 (24) 

YCH4 =
R ∙
273.15 + T(°C)
1.013 ∙ 105

64
∙ 1000  

(25) 

QCH4 = YCH4 ∙  
1

YM
∙ ρ17 ∙ VMFC  

(26) 

where kH
θ  is Henry’s law constant for oxygen at 25°C [mol L-1 atm-1]; −ΔsolnH R⁄  is the 

temperature dependence coefficient [K]; T is the actual liquid temperature [°C] and T0 

is the reference temperature (25°C); pO2 is the partial pressure for oxygen on the air-

side of the cathode [atm]; MO2 is the molar weight of oxygen (32 g mol-1); R is the ideal 

gas constant [J K-1 mol-1]; YM is the yield coefficient for acetoclastic methanogens 

[mgxCOD mgsCOD
-1]; and YCH4 is the methane equivalent of COD [mLCH4 mgsCOD

-1]. 
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Table 3: Kinetic rate expressions ρj for the whole-cell model. 

Process (j) Process rate ρj  (mg L-1 d-1) 

ρ1 
Hydrolysis entrapped    
organics  

fT ∙ KHYD ∙

XS
XH

KX,HYD +
XS
XH

∙ [
SO2

SO2+KO2,H
+ ηh ∙

KO2,H
SO2 + KO2,H

∙
SNO

SNO + KNO
+ ηfe ∙

KO2,H
SO2 + KO2,H

∙
KNO

SNO + KNO
] ∙ XH 

ρ2 
Hydrolysis of entrapped 
organic nitrogen 

fT ∙ KHYD ∙

XS
XH

KX,HYD +
XS
XH

∙ [
SO2

SO2+KO2,H
+ ηh ∙

KO2,H
SO2 + KO2,H

∙
SNO

SNO + KNO
+ ηfe ∙

KO2,H
SO2 + KO2,H

∙
KNO

SNO + KNO
] ∙ XH ∙

XND
XS

 

ρ3 Cathodic re-aeration fT ∙ fF ∙
kO
20 ∙ ACat

VMFC/1000
∙ (SO2

∗ − SO2) 

ρ4 
Electrochemical          
ammonia stripping 

fT ∙ fF ∙
kFAN
20 ∙ ACat
VMFC/1000

∙
SNH ∙ 10

pHCat

exp (
6344

273.15 + T(°C)
) + 10pHCat

 

Heterotrophic microbes XH 

ρ5 
Aerobic growth on fer-
mentable substrates, SF 

fT ∙ µH ∙
SF

SF + KF,H
∙

SO2
SO2 + KO2,H

∙
SF

SF + SA
∙ XH 

ρ6 
Aerobic growth on fer-
mentation products, SA 

fT ∙ µH ∙
SA

SA + KA,H
∙

SO2
SO2 + KO2,H

∙
SA

SF + SA
∙ XH 

ρ7 
Anoxic growth on fer-
mentable substrates, SF 

fT ∙ µH ∙ ηg ∙
SF

SF + KF,H
∙

KO2,H
SO2 + KO2,H

∙
SNO

SNO + KNO
∙

SF
SF + SA

∙ XH 

ρ8 
Anoxic growth on fermen-
tation products, SA 

fT ∙ µH ∙ ηg ∙
SA

SA + KA,H
∙

KO2,H
SO2 + KO2,H

∙
SNO

SNO + KNO
∙

SA
SF + SA

∙ XH 

ρ9 Lysis  fT ∙ bH ∙ XH 

ρ10 Fermentation fT ∙ qfe ∙
KO2,H

SO2 + KO2,H
∙

KNO
SNO + KNO

∙
SF

SF + Kfe,H
∙ XH 

ρ11 Ammonification fT ∙ kA ∙ SND ∙ XH 

Autotrophic microbes XA 

ρ12 Aerobic growth fT ∙ µA ∙
SNH

SNH + KNH
∙

SO2
SO2 + KO2,A

∙ XA 

ρ13 Lysis fT ∙ bA ∙ XA 

Electrochemically active microbes XEA 

ρ14 Anaerobic growth fT ∙ µEA ∙
SA

SA + KA,EA
∙

Mox
Mox + KM,EA

∙
SNH 

SNH + KNH,EA
∙ XEA 

ρ15 Lysis  fT ∙ bEA ∙ XEA 

ρ16 Mediator reactivation 86,400 ∙ MNADH ∙
IMFC
m ∙ F

∙
1

VMFC ∙ XEA
 

Methanogenic microbes XM 

ρ17 Anaerobic growth fT ∙ µM ∙
SA

SA + KA,M
∙

SNH
KNH,M + SNH

∙ XM 

ρ18 Lysis  fT ∙ bM ∙ XM 

Note: 
fF is defined as 1 (1 + ζ · t⁄ ) according to equation 30 
 

fT is defined as eθT(T−20) for ρ1-ρ15 and eθT(T−35) for ρ17-ρ18 
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Table 4: Gujer-Petersen matrix of the whole-cell model. 
 

Variable (i) → 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

SO2 SI SF SA SNH SNO SALK SND Mox XI XS XP XND XH XA XEA XM 

↓ Process (j) mgO2 L-1 mgsCOD L-1 mgsCOD L-1 mgsCOD L-1 mgN L-1 mgN L-1 mmol L-1 mgN L-1 mgmediator mgxCOD
-1 mgCODx L-1 mgxCOD L-1 mgxCOD L-1 mgN L-1 mgCODx L-1 mgCODx L-1 mgCODx L-1 mgCODx L-1 

ρ1   +1        −1       

ρ2     
   +1     −1     

ρ3 +1   
 

            
 

ρ4    
 

−1            
 

Heterotrophic microbes XH 

ρ5 1 −
1

YH
 

 
−
1

YH
 

 
−iNBM  −

iNBM

14
 

  
 

  
 +1  

  

ρ6 1 −
1

YH
 

 
 −

1

YH
 −iNBM  −

iNBM

14
 

  
 

  
 +1  

  

ρ7   −
1

YH
 

 

−iNBM −
1 − YH

2.86 ∙ YH
 

1 − YH

14 ∙ 2.86 ∙ YH
 

−
iNBM

14
 

 

 

 

  

 +1  

  

ρ8    −
1

YH
 −iNBM −

1 − YH

2.86 ∙ YH
 

1 − YH

14 ∙ 2.86 ∙ YH
 

−
iNBM

14
 

 

 

 

  

 +1  

  

ρ9    
 

   
  

 1 − fp fp iNBM − fp ∙ iNXP −1  
  

ρ10   −1 +1    
  

      
  

ρ11    
 

+1  
1

14
 −1 

 
 

 
 

  
 

  

Autotrophic microbes XA 

ρ12 1 −
4.57

YA
   

 

−
1

YA
− iNBM 

1

YA
 

−
iNBM

14
 

−
1

7 ∙ YA
 

 

 

  

   

+1  

 

ρ13  
 

 
 

   
  

 1 − fp fp iNBM − fp ∙ iNXP  −1  
 

Electrochemically active microbes XEA 

ρ14    −
1

YEA
 −iNBM   

 
−

ΥM
YEA ∙ XEA

  
     

+1  

ρ15    
 

   
  

 1 − fp fp iNBM − fp ∙ iNXP   
−1  

ρ16        
 

+1         

Methanogenic microbes XM 

ρ17    −
1

YM
 −iNBM   

  
 

     
 +1 

ρ18           1 − fp fp iNBM − fp ∙ iNXP    −1 
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3.2.1 Intracellular mass balance 

To describe the extracellular electron transfer from the carbon source to the anode the 

presence of endogenous mediators, in reduced and in oxidized form (NADH/NAD+) 

with a constant pool of mediators per microorganism (MTotal) is assumed [29]. The 

oxidized mediator form (Mox, e.g. NAD+) is capable of accepting two electrons genera-

ted from electroactive biodegradation of acetate. The transformed reduced mediator 

form (Mred, e.g. NADH) releases the transported electrons at the anode surface, which 

then pass through an external circuit to the cathode, where they react with oxygen and 

hydronium ions to form water. Electron donation leads to mediator reactivation, allo-

wing the evolving oxidized mediator form to accept electrons again. Based on the as-

sumed constant mediator pool, the concentration of reduced mediators can be calcu-

lated from the mass balance. The factor 86,400 for process j=14 (see Table 3) re-

presents a time conversion factor (seconds→days). Finally, the intracellular material 

balance of electricigens can be described by equations 27 to 29.  

MTotal = 0.05 (27) 

MTotal = Mred +Mox (28) 

dMox
dt

= −
ΥM

YEA ∙ XEA
∙ ρ14 + ρ16 (29) 

where Mox is the oxidized mediator fraction per electrochemically active microbe [mgme-

diator mgxCOD
-1]; Mred is the reduced mediator fraction per electrochemically active mi-

crobe [mgmediator mgxCOD
-1]; MTotal is the total mediator fraction per electrochemically ac-

tive microbe [mgmediator mgxCOD
-1]; ΥM is the oxidized mediator yield [mgmediator mgsCOD

-

1]; and YEA is the yield coefficient of electrochemically active microbes [mgxCOD mgsCOD
-

1].  
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3.2.2 Fouling decline kinetic submodel 

Herein, the complex nature of electric field induced salt precipitation within the catalyst 

layer of air-exposed cathodes (referred to as “contaminated” cathodes) was described 

by an empirical non-linear model approach (equation 30). Diminishing cathodic diffu-

sivity over time due to salt deposits was represented by an ongoing estimation of the 

overall mass transfer coefficient for oxygen (kO
20, normalized to 20°C). Therefore, fur-

ther independent experiments were carried out using contaminated cathodes (Vito-

CORE®; VITO NV; BEL) of three small-sized (328 ± 8 mL) wastewater-fed SC-MFCs 

[52,65] operated in batch-mode for 138 days. Mass transfer coefficients were esti-

mated from measured oxygen re-aeration curves (FDO® 925; WTW GmbH; GER), af-

ter mounting the contaminated cathodes on completely mixed abiotic single-chamber 

reactors (380 ± 9 mL). Further details regarding the implementation of the experi-

mental settings, operation conditions, and calculation procedure are provided in the 

supporting information.  

To obtain a non-dimensional fouling factor (fF), the kO
20-ratio between contaminated 

(kO,t
20  in cm s-1) and fresh cathodes (kO,0

20  in cm s-1) was calculated. Based on the usual 

used fouling decline kinetic models (equation 30), the best fit was obtained from a 

Hermia’s-like intermediate pore blocking (n=1) model [66,67].  

fF =
kO,t
20

kO,0
20  = (1 + ζ · t)

−n
for n=1
→     fF =

1

1 + ζ · t
 (30) 

where for standard pore-blocking n=2; intermediate pore blocking n=1; and cake filtra-

tion n=0.5.  

The phenomenological model constant ζ [d-1] with the highest probability was obtained 

via MCMC method and was 0.016 d-1 (Figure 3). Z-Score for checking chain conver-

gence was -0.08 (|Z|<1.28). Note, that the obtained parameter ζ might differ at higher 
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or lower current densities, which potentially enhances or reduces the electric field in-

duced salt precipitation [68]. Herein, mean current densities were 204 ± 57 mA m-²Cat 

(Day 0-70) and 98 ± 52 mA m-²Cat (Day 70-138), respectively (see also Figure S5). 

However, comparing the results with reported data from literature [61,64] further 

strengthens the predictive quality of the derived fouling factor.  

 

Fig. 3: Diminishing diffusivity of the cathode (□ internal and surface fouling, ○ internal 

fouling), represented by the evolution of the mass transfer coefficient for oxygen (𝑘𝑂
20). 

Hermia’s-like intermediate pore blocking (n=1) model was used to represent the fouling 
decline kinetics. Shaded area indicates 95% confidence interval for ζ obtained from 
MCMC simulations after 100,000 iterations (ζα=2.5%=0.0098 d-1, ζα=97.5%=0.0264 d-1).  
 

3.3 Electrical submodel 

One way of modeling fast and slow non-linear electrical dynamics is to abstract the 

MFC into an equivalent electrical circuit [22–24,26,69]. Herein, the used simplified 

Randle’s circuit (Figure 2B) consists of a serial resistor followed by a parallel-con-

nected combination of resistor and capacitor. The serial resistor represents the ohmic 
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resistance (Rohmic in Ω), the parallel-connected resistor is related to the coupled anodic 

and cathodic activation resistance (Ract in Ω) and the capacitor is the combined double-

layer capacitance (Cdl) of the anode and cathode. The sum of the activation and ohmic 

resistance is referred to the internal resistance (RInt,R-PWM in Ω) obtained from the R-

PWM mode. 

RInt,R−PWM = Rohmic + Ract 
(31) 

The lack of diffusion-limited concentration losses (ηconc in V) in the simplified equivalent 

electrical circuit was considered using the Nernst equation. Herein, the total mediator 

concentration is assumed as reference concentration [70]. Hence, low reduced medi-

ator concentrations result in high concentration losses and vice versa. By combining 

equations 31 and 32 the total cell internal resistance (RInt in Ω) is obtained.   

ηconc =
R ∙ (273,15 + T(°C))

m ∙ F
∙ log (

MTotal
Mred

) ⇒ Rconc =
ηconc
IMFC

 (32) 

RInt = RInt,R−PWM + Rconc = Rohmic + Ract + Rconc (33) 

where T is the actual liquid temperature [°C]; m donates the number of electrons trans-

ferred per mol of mediator [molelectrons molmediator
-1]; F is the Faraday constant [C mol-1]; 

Rconc is the concentration resistance [Ω]; and IMFC is the cell current [A]. 

Based on the simplified Randle’s circuit, the dynamic behavior of the MFC cell voltage 

can be described by equations 34 and 35. The link between the conversion and elec-

trical submodel is the electrical current (IMFC), which can be obtained from the cell volt-

age and the external resistance (Rext) via Ohm's law (equation 36).  

dUC
dt

=
86,400

Cdl
∙ (

UOCV
(Rohmic + Rext)

−
Rohmic + Ract + Rext
Ract ∙ (Rohmic + Rext)

∙ UC)     (34) 

UMFC(t) = (UOCV(t) − UC(t) − ηconc(t)) ∙
Rext

Rohmic + Rext
 (35) 
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IMFC(t) =
UMFC(t)

Rext
∙

Mred
Mred + ε ∙ MTotal

  (36) 

where UC is the voltage at the capacitor [V]; UOCV is the open-circuit voltage [V]; Rext is 

the total external load resistance i.e. the sum of load and switch resistance [Ω]; UMFC 

is the MFC cell voltage [V]; and ε [mgmediator mgxCOD
-1] is the half-saturation coefficient, 

which limits the calculated MFC current at low values of Mred. 

The unknown model parameters Rohmic, Ract, UOCV, and Cdl could be determined in real-

time, because the adopted parameter estimation routine (R-PWM mode, [22]) and the 

electrical submodel are based on the same equivalent electrical circuit. The unique 

feature of the R-PWM mode is its ability to estimate the internal resistance components 

while considering the effects of cell capacitance. Similar to the current interruption 

method, a high switching frequency of the external electrical resistance (from open-

circuit to closed-circuit or vice versa) causes an immediate voltage response of the 

system, which is directly linked to the ohmic resistance. Thus, according to our previ-

ous findings [22], Rohmic was calculated at high switching frequencies (100 Hz, duty 

cycle of 80%). In contrast, low frequencies of 0.004 Hz and a duty cycle of 50% cause 

an exponential voltage response of the system, which was used to calculate the acti-

vation resistance, open-circuit voltage, and cell capacitance. Electrochemical parame-

ter estimation was performed every day by analyzing the recorded voltage profiles 

(VBA, Microsoft Excel 2016). It is important to note that the electrical load resistance 

was changed after every polarization. A detailed description of the used parameter 

estimation routine can be found in Littfinski et al. [22].  
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4 Results and discussion 

4.1 Real-time estimation of electrochemical parameters  

Real-time monitoring of electrochemical parameters was performed by the R-PWM 

mode to address unpredictable fluctuation in real wastewater compositions i.e. liquid 

temperature, electrical conductivity, and substrate concentration (Figure 4). During the 

first five days of operation, a near exponential decrease in activation resistance 

(14.9 ± 0.5 down to 3.3 ± 0.1 Ω) and vice versa increase in open-circuit voltage 

(39.0 ± 1.0 up to 500.0 ± 4.6 mV) and cell capacitance (4.3 ± 0.6 up to 7.9 ± 1.0 F) was 

observed. These results are consistent with previous observations [24,71] and point to 

rapid biofilm development and increasing biocatalytic activities of electricigens. After 

inoculation, all internal cell parameters show partly larger fluctuations, which reflect 

changes in the wastewater compositions. For instance, in periods with high rainfall 

frequencies (red arrows) an increase in Rohmic was observed, which could be attributed 

to dilution effects by low conductive rainwater with high conductive municipal 

wastewater. Experimental results from Ha et al. [69] suggested an inverted Monod-like 

relationship between the acetate concentration and Ract. Following these findings, in-

creasing Ract values are mainly apparent during rainfall events and at low organic load-

ings, which may point to microbial responses to changes in their environment possible 

due to substrate or nutrient depletion and limited metabolism of electricigens 

[24,69,71]. A correlation between the bulk-liquid pH and Ract (related to the anode and 

cathode) could not be identified, possibly due to insufficient pH fluctuations (6.7 ± 0.3) 

and divergent pH dependencies for Ract at both electrodes [72]. In this regard, it is 

important to note that an isolated analysis of the factors affecting the value of Ract is 

not possible while using municipal wastewater as feedstock. Interestingly, lower fluc-

tuation of electrochemical parameters at high organic flow loads suggested sufficient 
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nutrient availability. Long-term recorded open-circuit voltage shows a successive de-

creasing trend, which can be potentially related to electric field salt deposits. Further-

more, it appears that the organic loads affect the open-circuit voltage to a much lesser 

extent. The average double-layer capacitance from MFC-V1 was about 3-5 times 

higher than that from MFC-C and MFC-V2. This difference can be explained due to an 

undirected electrical anode treatment (before starting the experiment), which changed 

the inner structure of the graphite fiber anode and potentially increased the active bio-

film area of the anode electrode. Ha et al. [69] observed a 10-fold decrease when 

reducing the cathodic area by half, whereas Houghton et al. [73] reported a propor-

tional increase in cell capacitance when increasing the anode area. Based on the 

higher capacitance, open-circuit voltage of MFC-V1 is also higher compared to MFC-

C and MFC-V2.  

 

Fig. 4: Real-time monitoring of ohmic and activation resistance, open-circuit voltage, 
and cell capacity for MFC-C, MFC-V1 and MFC-V2 using the R-PWM mode. The red 
arrows indicate periods with high rainfall frequencies. 
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4.2 Automatic parameter calibration procedure 

A preliminary sensitivity analysis for MFC-C was performed before starting parameter 

optimization. For classification, a parameter Ψ is considered as insensitive to a certain 

process variable if |Tij| <0.25; if 0.25 ≤ |Tij| <1 the parameter Ψ is considered to be sen-

sitive; if 1≤ |Tij| <2 the parameter Ψ is considered to be very sensitive; and if |Tij| ≥2 the 

parameter Ψ is considered to be extremely sensitive [74]. 

The sensitivity analysis for MFC-C was performed for all model parameters and their 

sensitivity on the process variables UMFC, sCOD, SNH, SO2, and QCH4. The six most 

sensitive model parameters were separately selected for each process variable by 

considering the centralized sensitivity function Tij from all parameters and processes 

variables (Figure 5). Cell voltage (results not shown) was mostly insensitive 

(TUMFC,j<0.25) to parameter variation because most of the required electrochemical pa-

rameters were already estimated by the R-PWM mode.  

The sensitivity functions Tij (Figure 5), depend also on the actual operating conditions. 

For instance, the heterotrophic yield coefficient YH is more sensitive to sCOD at high 

and low volumetric loading rates. The sensitivity of pHCat (pH in the surroundings of the 

cathode surface) decreases with increasing flow rates and with lower substrate con-

centrations. Remarkably, for the selected process variables the influence of the elec-

trochemically active microbes is very low, while parameters related to heterotrophic 

microbes are the most sensitive. Particularly, the maximum hydrolysis rate (KHYD) 

seems to be the crucial model parameter, which influences all selected process varia-

bles. 

Parameter importance ranking for each process variable was performed by calculating 

the root mean square of Tij as a sensitivity measure (δi
msqr

) [75]. KHYD has the highest 

sensitivity throughout the simulation to the process variables sCOD and QCH4. For SNH 
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the assumed parameter value of pHCat, which is responsible for ammonia volatilization 

is the most dominant model parameter. The order (starting from the highest to the 

lowest) of parameter sensitivity on dissolved oxygen concentration (SO2) is 

µA>KO2,A>bA>bH>KHYD>µH.  

The three most sensitive parameters for the selected process variables were the max-

imal specific hydrolysis rate (KHYD), the pH in the vicinity of the cathode surface (pHCat), 

and the autotrophic maximal specific growth rate (µA). These three parameters were 

further used for model parameter optimization and uncertainty analysis, while all other 

model parameters were accepted from benchmark simulation studies.  

 

Fig. 5: Centralized sensitivity functions Tij of sCOD, SNH, SO2, and QCH4 for MFC-C with 
respect to the six most sensitive parameters. Sensitivity functions were calculated us-
ing benchmark parameters as a reference simulation and optimal perturbation factors 
(Table S3). Bold and dashed marked parameters have the highest sensitivity measure 

(𝛿𝑖
𝑚𝑠𝑞𝑟

) for a certain process variable. 
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The identified most sensitive parameters were optimized with the help of the MCMC 

method. Therefore, MCMC simulations were performed for 10,000 iterations (number 

of accepted runs: 3,207) for KHYD, µA, and pHCat. After the “burn-in” period (first 2,000 

iteration steps) the convergence of the single-chains was checked via the Geweke 

statistic. Calculated Z-Scores for KHYD, µA, and pHCat were 0.39, -0.28, and 0.69, re-

spectively. Hence, results indicate stationarity and convergence of the single chains, 

since |Z|<1.28. From histograms and Kernel densities the parameters with the highest 

probability and their uncertainty (standard deviation) can be obtained (see Figure 6). 

For KHYD, µA and pHCat optimized parameter values were 3.91 ± 0.05 mgxCOD mgxCOD
-

1 d-1, 1.23 ± 0.06 d-1 and 9.01 ± 0.18, respectively. As stated by Couto et al. [44] little 

dispersion in the scatter results of the MCMC simulation (see Figure S8) and the small 

standard deviations of each parameter also reflect the good convergence.  

The average of each optimized model parameter was used for direct and cross valida-

tion using experimental data from MFC-C, MFC-V1 and MFC-V2. 
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Fig. 6: Scatter and Kernel density plots as well as posterior distribution for the most 
sensitive model parameters (KHYD, µA, and pHCat) for MFC-C. Results are obtained with 
the Monte-Carlo Markov-Chain method using the adaptive Metropolis algorithm 
(10,000 iterations). Arrows and the intersection of the red lines indicate the parameter 
set with the highest probability.  
 

4.3 Predictive capacity of the whole-cell model  

4.3.1 MFC cell voltage and microbe concentration 

Model evaluation is performed after the start-up phase, i.e. from day 32 of operation. 

Results are presented for MFC-C, MFC-V1, and MFC-V2 by using the estimated elec-

trochemical parameters (R-PWM mode, Figure 4) and the MCMC optimized parame-

ter values while keeping all other parameters values unchanged (see Table S4).  
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The comparison of simulated with observed cell voltage demonstrates that the simpli-

fied Randle circuit combined with the presented parameter estimation routine is able 

to provide reliable predictions of the non-linear electrical behavior of each MFC (Fig-

ure 7). Also, short-term and long-term effects of fluctuating operation conditions and 

salt deposits on cell voltage can be described through the electrical submodel. Fur-

thermore, results confirm the applicability of the R-PWM mode, while the MFC is online 

and the catalytic activity of electricigens was only marginally affected. 

Following the fouling decline kinetic model (equation 30), the concentration of aerobic 

microbes (heterotrophs and autotrophs) successively decreased depending on the 

value of ζ. Vice versa, as a result of kinetic growth limitation due to a reduced flux of 

oxygen, the evolution of methanogens continually increased. Concomitantly, there was 

a stepwise increase in the organic loadings, which also promotes the growth of meth-

anogens. A higher concentration of electrochemically active microbes in MFC-V1 can 

be explained by higher cell capacitance and open-circuit voltage (see Figure 4). 

Linked to the higher concentration of electricigens, the simulated contribution to total 

COD removal is on average 4% higher than in MFC-C and MFC-V2. The increased 

activity of the electricigens ultimately leads to a reduced concentration of methanogens 

in MFC-V1. Furthermore, the results demonstrate that the selected Xmax,λ-values have 

a negligible influence on the predictive capacity, as the maximum values were only 

rarely reached. The simulated degree of contribution on total COD removal rate related 

to aerobic carbon oxidation, denitrification, electrogenesis, and methanogenesis was 

in a range of 21-22%, 44-45%, 21-25%, 9-14%, respectively. Thus, the COD removal 

by non-exoelectrogenic microbes might account for 75-79%. When increasing the or-

ganic loadings, the average percentage of COD removal via methanogenesis increase 

immediately from 4-9% at 413 gCOD m-3 d-1 to 12-22% at 740 gCOD m-3 d-1 and further 

to 26-33% at 915 gCOD m-3 d-1. The following reduction from 915 gCOD m-3 d-1 to 
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352 gCOD m-3 d-1 reduces the contribution of methanogenesis again to 11-14%. Inter-

estingly, throughout the simulation period, the substrate consumption rate via electrici-

gens is almost constant.  

 

Fig. 7: Comparison of simulated with observed cell voltage and predicted evolution of 
microbe concentrations for MFC-C, MFC-V1, and MFC-V2. Arrows indicate performed 
polarizations, while the shaded areas indicate the 95% confidence interval of ζ.  
4.3.2 Soluble COD, total ammonia nitrogen, and methane production  

Figure 8 illustrates the model outputs and measured effluent concentrations for sCOD 

and SNH as well as the methane production rate for MFC-C (direct validation), MFC-V1 

(cross validation), and MFC-V2 (cross validation). Overall, the experimental data were 

adequately described by the developed whole-cell model. A comparison of model 

output and measured effluent concentration of sCOD resulted in a reasonable 

agreement. Despite changes in operating conditions, the effluent concentration of 

sCOD remains almost constant throughout the operation phase. This phenomenon can 

be explained by an increasing concentration and activity of acetoclastic methanogens 

(see Figure 7), which is also associated with higher methane production rates. 
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Measured and predicted methane production rates had also only small discrepancies. 

Lower methane production rates in MFC-V1 are linked to higher concentrations of 

electricigens, which strengthens the competition for the available substrate. The 

increased activity of electricigens is also consistent with 1.2-1.3 times higher current 

densities of MFC-V1 compared to MFC-C and MFC-V2.  

The comparison of total ammonia nitrogen concentrations between measured and 

predicted effluent leads to qualitative similar trends. However, after about 100 days of 

operation, there are stronger deviations between simulated and observed effluent 

concentrations. This can be attributed to a combination of the estimated uncertainties 

in the fouling factor fF and factors affecting NH3 emissions. Performed simulation runs 

using ζα=2.5%=0.0098 d-1 and ζα=97.5%=0.0264 d-1 indicate that uncertainties in fF-estima-

tion strongly affects the model predictive quality. Remarkably, sCOD and the methane 

production rate are only insignificantly affected by the strength of fF. Higher current 

densities for MFC-C (218 ± 31 mA m-2
Cat), MFC-V1 (279 ± 49 mA m-2

Cat), and MFC-V2 

(233 ± 33 mA m-2
Cat) compared to that during fF-estimation tests (151 ± 76 mA m-2

Cat) 

might be another factor contributing for this lower predictive capacity. These higher 

current densities might favor salt precipitation at the cathode surface, which could 

result in a stronger reduction in diffusivity. Moreover, the pH above the cathode (pHCat) 

was assumed here as a model constant. An implicit pH calculation within the system 

might be considered in further studies to improve the ammonia stripping calculations. 

As reported by Li et al. 2020 [68] the formation of a cathodic biofilm could be another 

factor, which effectively lowers NH3 emissions. This effect was not considered for the 

estimated fouling factor. To investigate the biofilm-related impact on NH3 emissions, 

further simulation runs were carried out by neglecting the process of electrochemical 

ammonia stripping. Results indicate an increased prediction quality for the effluent 

concentration of total ammonia nitrogen after 100 days of operation. Conversely, 
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simulated and observed effluent concentrations showed larger discrepancies during 

operating days 30 and 100 when the process of ammonia volatilization is not 

considered.  

A more detailed look at the degree of contribution to total ammonia nitrogen removal 

revealed, that on average 37% might be associated with the electricity-induced 

ammonia volatilization, whereas the remaining 63% can be attributed to biological 

nitrification. These findings are consistent with previous investigations [52]. 
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Fig. 8: Comparison of simulated effluent concentrations (sCOD and SNH) and methane 
production rate (QCH4) with experimental data of MFC-C, MFC-V1, and MFC-V2. Red 
shaded areas indicate the 95% confidence interval of the phenomenological model 
constant ζ. 
 
In addition to the graphical inspections, the model quality can also be evaluated 

through goodness-of-fit criteria. A significant improvement in the model prediction qual-

ity was achieved for MFC-C by using the MCMC optimized parameter set instead of 
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benchmark parameter values. Only through the optimization of KHYD, µA and pHCat, the 

RMSE and MSE for the process variables QCH4 and SO2 decreased by 58% and 42%. 

Comparatively the RMSE and MSE for sCOD, SNH and UMFC remain almost unchanged 

(see Table 5). Goodness-of-fit criteria of MFC-V1 and MFC-V2 are similar to that of 

MFC-C. Overall, the calculated RMSE and MSE value are in line with good visual 

agreement between the model output and experimental data. Since measured dis-

solved oxygen concentrations ranged from 0.00 to 0.04 mgO2 L-1, the lower model qual-

ity for SO2 is likely related to the low resolution of the used oxygen probe (± 0.005 mg L-

1).  

 

Table 5: Goodness-of-fit criteria (RMSE and in brackets the MSE) for the measured 
process variables using the benchmark parameter set and the MCMC-optimized pa-
rameter set with the highest probability for MFC-C, MFC-V1, and MFC-V2.  

Process variable 
Benchmark parameter set: 

(see Table S4) 
MCMC-optimized parameter set: 

(KHYD=3.91 mgxCOD mgxCOD d-1 | µA=1.23 d-1 | pHCat=9.01) 

 MFC-C MFC-C MFC-V1 MFC-V2 

sCOD (mgsCOD L-1) 9.8 (0.03) 10.4 (0.03) 11.0 (0.03) 12.9 (0.05) 

SNH (mgN L-1) 5.7 (0.03) 5.7 (0.03) 4.4 (0.02) 7.1 (0.04) 

QCH4 (mLCH4 d-1) 27.2 (0.34) 11.3 (0.06) 5.2 (0.03) 16.1 (0.11) 

SO2 (mgO2 L-1) 0.012 (0.44) 0.007 (0.16) 0.01 (0.26) 0.01 (0.22) 

UMFC (mV) 5.4 (1.4·10-3) 5.5 (1.4·10-3) 10.9 (9.3·10-4) 5.2 (1.3·10-3) 
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5 Conclusion 

This study introduces a novel whole-cell framework to simulate pollutant transport, con-

version processes, and the non-linear electrical dynamics of three continuous-flow sin-

gle-chamber MFCs. Therefore, the model integrates the combined bioelectrochemical-

electrical model with the widespread Activated Sludge Model No.1 (ASM1) and specific 

equations from ASM2. Additional submodels, such as the diffusion film model with a 

membrane in between the gas-liquid phase and a fouling decline kinetic model com-

pleting the whole-cell model.  

The predictive capacity of the novel model was evaluated using experimental data of 

three single-chamber microbial fuel cells operated with municipal wastewater for 

150 days. Unpredictable fluctuations in wastewater compositions and their impact on 

electrochemical parameters were considered through a real-time parameter estimation 

routine (R-PWM mode). Results of sensitivity analysis suggested that the maximal spe-

cific hydrolysis rate, the autotrophic maximal specific growth rate, and the pH in the 

surroundings of the cathode surface are the most sensitive parameters. These param-

eters were optimized by the Monte-Carlo Markov-Chain method using the adaptive 

Metropolis algorithm. Related to the simulated total COD removal rate, the degree of 

contribution of aerobic carbon oxidation, denitrification, electrogenesis, and methano-

genesis is in the range of 21-22%, 44-45%, 21-25%, and 9-14%, respectively. Overall, 

results from direct and cross validation indicate that the model can predict the observed 

effluent concentrations (soluble COD and total ammonia nitrogen), the methane pro-

duction rate, and the electricity generation with a reasonable accuracy under variable 

hydraulic conditions and organic loadings. 

Furthermore, to allow for a long-term description of the effluent concentrations, espe-

cially of total ammonia nitrogen, the simulation results point to the importance of con-

sidering the process of ammonia volatilization together with the gradual fouling due to 



 

39 
 

salt deposits at the cathode. Thus, this whole-cell model combined with the automated 

R-PWM mode has an enormous potential for future research studies on different cell 

designs (number of electrodes, electrode materials, etc.), control strategies, and oper-

ational optimization of microbial fuel cells. 
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